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An Optimal Task Management and Control Scheme
for Military Operations with Dynamic Game
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Abstract

As is well known, military operation in a combat scenario is extremely intricate and often prone to optimal and real-time
decisions. In this paper, we study task management and control problem for military operations with a dynamic game strategy.
Toward this, the underlying problem is modeled by a matrix game scheme with performance index defined for both parties.
Then, we proceed to present a fast and optimal search algorithm, inspired by graph theory and Kuhn-Munkres algorithm, to
solve dimension explosion problem inherent with matrix game scheme and retrieve the optimal solution for each combat entity.
Simulation results verified the effectiveness of the proposed scheme.
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I. INTRODUCTION

M Ilitary operations in a combat scenario is an extremely complicated system involving multiple level of decision making
with conflict and even competitive objectives. In general, the command center of each side should be able to seek a

feasible, or optimal if possible, solution to allocate the limited resources by taking into account the battlefield situation and
possible adversary actions, in order to optimize the performance index of the entire team [1–7]. In [5], a UCAV combat
task assignment model is established considering air superiority and attack income to meet the needs of different tactics. [7]
investigates the task assignment problem where the value of the targets is time-varying, and combines the dynamic programming
and multisubgroup ant colony algorithm. However, the challenge of the underlying problem is not only how to model the combat
operation systematically, but also how to seek an optimal and real-time solution for an otherwise computational exhaustive
problem.

Dynamic game theory has received much attention for its advantages of considering multi-player competition in complex
situations and formulating feasible strategies for agents [8–14]. Cruz and Simaan made a breakthrough on application of game
theory in control of military operations [2–4], but finding a Nash equilibrium in a two-player game has been proved to be
a PPAD-Complete problem [15]. In [3], a suboptimal solution over a small moving time horizon instead of the entire time
horizon for computing the game solutions is proposed. [16] and [17] discussed an efficient method for approximating the
reaction strategy for one team given a strategy chosen by another team using a unit level team resource allocation algorithm
(ULTRA) in competitive multi-team target assignment problems. Duan [18] applied a hybrid predator-prey particle swarm
optimization (PP-PSO) to the solution of the mixed strategy Nash solution, which can effectively solve the dynamic task
allocation problem of multi-agents. Orafa [19] introduced a Q-Learning algorithm in large state-action domains.

It should be pointed out that, albeit their effectiveness, most of aforementioned results struggles to produce real-time decisions
against large scale operations, and may not be able to achieve a tradeoff between algebraic complexity and accuracy. In this
paper, we attempt to tackle this problem using a maximum weight matching algorithm. In particular, the underlying task
management problem is abstracted as the bipartite graph weight matching problem, and a classic maximum weight matching
solution is thus introduced to reduce the computational burden without sacrificing the accuracy. Comparing with existing
schemes, we proved that the proposed scheme retains the Nash equilibrium of the overall problem, as it should, while exhibiting
superior performance in terms of convergence rate.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Dynamic model of military operations

In this paper, we consider combat operations between two groups of entities, labeled as Blue and Red, with Blue defined
as the attacking force and Red as the defending force. The number of combat units of Blue and Red are denoted by NB and
NR, respectively, and the battlefield is limited to an area measured by W ×L×H . In addition, each combat unit is assumed
to equip a number of w weapons and its physical condition is measured by the health point (HP) 0 ≤ p ≤ 1.
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Fig. 1: Engagement geometry

Without loss of any generality, the combat operation is assumed to be evolved in a discrete time with time steps tk = kT ,
k = 0, ...,K and T is the predefined time interval. As depicted in Figure 1, dynamics of the ith unit can be described as
follows,

xi(k + 1) = xi(k) + Tvi(k) cosϕi(k) cos γi(k)
yi(k + 1) = yi(k) + Tvi(k) sinϕi(k) cos γi(k)
zi(k + 1) = zi(k) + Tvi(k) sin γi(k)
vi(k + 1) = vi(k) + Vi(k)
ϕi(k + 1) = ϕi(k) + Ψi(k)
γi(k + 1) = γi(k) + Υi(k)

(1)

where [xi(k), yi(k), zi(k)]T denotes the location, vi(k), ϕi(k), and γi(k) are the speed, flight path angle and heading angle
during time interval T , respectively; Vi(k) ∈ {0,±V }, Ψi(k) ∈ {0,±Ψ},Υi(k) ∈ {0,±Υ} and V , Ψ, Υ are maximal allowed
deviations for speed, flight path angle and heading angle, respectively.

Hence, the state of the ith unit is

λXi (k) = [xXi (k) , yXi (k) , zXi (k) , pXi (k) , wXi (k)]T (2)

where pXi (k) and wXi (k) denote the remaining HP and numbers of weapons, respectively, and X denotes either the Blue
force or Red force.

In addition, the number of weapons is updated by

wXi (k + 1) = wXi (k)−
NY∑
j=1

cY Xji (k) (3)

where cY Xji (k) = 0, 1, ..., wXi (k) is the salvo size of unit Xi while attacking unit Yi, with Y defined analogously as X .
The HP is updated as follows

pXi (k + 1) = pXi (k)−∆pXi (k) (4)

with

∆pXi (k) =

NY∑
j=1

PXYij (k)QXYij (k) (5)

where the attrition factor PXYij (k) represents the real kill rate of unit Yj attacking unit Xi, and can be expressed as PXYij (k) =

1 − (1− βwPKXY
ij )s

Y
j , as 0 ≤ βw ≤ 1 defined as the weather factor that can potentially implicate the kill rate and PKXY

ij

the probability of kill under perfect weather condition. Subsequently, let sYj be the average effective salvo size when unit Yj
fires at unit Xi, and

sYj = cXYij (k)

(
pYj (k)

pXi (k)

)ω
(6)

where 0 ≤ ω ≤ 1 is commonly known as the Weiss parameter [20, 21].
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Fig. 2: An example of f(r, δ)

Suppose QXYij (k) denote the probability that a missile fired by Yj effectively kills Xi, and [2]

QXYij (k) = βXYij

[
1− exp

(
−
pYj (k)

pXi (k)

)]
(7)

where 0 ≤ βXYij ≤ 1 is the probability that Yj treats Xi as its target, and

βXYij = f

(
gXi
gYj

, δ

)
(8)

where 0 < f(r, δ) < 1 is a monotonically decreasing function and f(r, δ)→ 1 if r ≤ δ, f(r, δ)→ 0 if otherwise, with gXi and
gYj defined as instantaneous load factor for Xi and Yj , and δ as the maximal threshold allowed by the guidance command,
as shown in Fig.2. That is, f(r, δ) will vanish exponentially should adversary’s maneuverability exceeds its capability, as it
should.

Hence, the control input for unit Xi is

uXi (k) =
[
V Xi (k),ΨX

i (k),ΥX
i (k), cXi (k)

]T
(9)

where cXi (k) =
[
cY X1i (k), ..., cY XNY i(k)

]T
is the attack vector of X against Y , and cY Xji (k) = 0 if Xi doesn’t choose unit Yj

as its target.
Remark: It is obvious that the proposed scheme combines motion planning, resource management, and target assignment

into one holistic conjecture. With proper choice of uXi , unit Xi will not only be able to dynamically move along a prime
direction, but also screen and acquire its next target with the highest probability of success.

B. Command constraint and payoff function

Unless otherwise specified, we consider the following constraints for all entities in the underlying scenario [2].
1) Target-selection constraint: At time instant k, no two combat units from the Blue force can attack (be targeted by) the

same combat unit from the Red force, and vice versa. That is,

cBi (k)T cBj (k) = 0, for each unit i 6= j of Blue (10)

and
cRi (k)T cRj (k) = 0, for each unit i 6= j of Red (11)

2) Fire constraint: Let dXYij (k) and θXYij (k) be the distance and line-of-sight angle between Xi and Yj at time instant k,
respectfully. Then, Xi can only choose Yj as its target of attack if{

dXYij (k) ≤ DX
i

θXYij (k) ≤ θXi
(12)

where DX
i is the maximal attack range for Xi and θXi is the maximal steering angle for sensors attached to Xi, as illustrated

in Figure 3.
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Fig. 3: Fire Constraint

3) Collision avoidance: Let Dunit and Dground be the minimal safe distance between any pair of units and minimal safe
distance from ground, respectively. Then, the following condition should be satisfied at any instant k, to avoid internal collision.{

dij (k) ≥ Dunit, ∀i 6= j
di,ground (k) ≥ Dground

(13)

where di,ground is the distance between unit i and the ground/surface.
4) Maneuverability constraint: Let vmax

i , ϕmax
i and γmax

i be the upper limit on speed, flight path angle and heading angle,
respectively, for unit i and  vi (k) ≤ vmax

i

ϕi (k) ≤ ϕmax
i

γi (k) ≤ γmax
i

(14)

In this paper, the goal of the Blue force is to destroy the combat units of the Red force as many as possible, while preserving
its own entities, and vice versa for the Red force. In other words, performance index for each side over the entire time horizon
can be designed as [2]

JX1,K = QX
(
ΛXK , u

X
K , u

Y
K

)
+

K−1∑
k=1

RX
(
ΛXk , u

X
k , u

Y
k

)
(15)

where QX(.) and RX(.) are terminal performance index function and integral performance index function about the state
ΛXk =

[
λX1 (k) , ..., λXNX (k)

]T
of X and the strategies of both sides, respectively.

However, it should be pointed out that searching an optimal/Nash solution to (15) over the entire time horizon is time-
consuming and, if even possible, computational exhaustive [8], its algebraic complexity could be overwhelming as k evolves.
Hence, it is a common practice to revoke receding horizon principle and introduce a one-step-ahead performance index for
dynamic game strategy, as suggested in [3] and its performance in formation control can be found in [22]. In this case, the
strategies uXk and uYk will only influence the payoff function only at time instant k+1. As a result, performance index becomes

JXk,k+1 = RX
(
ΛXk , u

X
k , u

Y
k

)
(16)

Here we define the payoff functions for both the Blue and Red forces as follows

JBk,k+1

(
uBk , u

R
k

)
=

NB∑
i=1

(
αBi p

B
i (k) + αRtar∆p

R
tar (k)

)
rBi (17)

and

JRk,k+1

(
uBk , u

R
k

)
=

NR∑
i=1

(
αRi p

R
i (k) + αBtar∆p

B
tar (k)

)
rRi (18)

where αBi and αRi are the weights to be specified, ∆pRtar (k) and ∆pBtar (k) are the loss of HP of the target of unit i, and rBi
and rRi are designed to evaluate the motion control performance, and

rBi =

NR∑
j=1

αRj e
−d̂ij(k) (19)

and

rRi =

NB∑
j=1

αBj e
−d̂ij(k) (20)
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where d̂ij is the normalized distance between units i and j.
Therefore, the problem to be solved in this paper is, for both the Blue and Red forces, to find a Nash equilibrium

(
uB∗k , uR∗k

)
that the value of JBk,k+1 and JRk,k+1 couldn’t be increased further with unilateral decisions, that is,

JBk,k+1

(
uB∗k , uR∗k

)
≥ JBk,k+1

(
uBk , u

R∗
k

)
,∀uBk ∈ UBk (21)

JRk,k+1

(
uB∗k , uR∗k

)
≥ JRk,k+1

(
uB∗k , uRk

)
,∀uRk ∈ URk (22)

where UBk and URk are sets of all admissible strategies at time instant k for the Blue and Red forces, respectfully.

C. Weighted bipartite graph

Before proceeding further, we introduce some preliminary results on graph theory. A weighted graph can be captured by
G = (V, E , ω), where V = {1, 2, ..., n} is the set of vertices, E ⊆ V ×V is the edge set, and ω : E → < denotes the weight of
the corresponding edge. In addition, a weighted graph is called bipartite graph (i.e., bigraph) if its vertices can be divided into
two disjoint and independent sets, namely, V = VL∪VR, and every edge connects a vertex in VL to one in VR. A matching M
is a set of the weighted edges chosen in such a way that no two edges share an endpoint, and the maximum weight matching
(MWM) problem is to find a matching M∗ such that the sum of weights of all edges in M∗ is the largest among all matchings,
that is [23]

M∗ = arg max
M⊂E

∑
e∈M

ω (e) (23)

Moreover, an augmenting path for a matching M is a path with an odd number of edges e1, e2, ..., em such that e(odd) not
in M and e(even) in M . Let εLi and εRj denote the label of left vertex i and right vertex j in G, then [24]

εLi + εRj ≥ ωij , ∀ eij ∈ E (24)

where ωij is the weight of the edge eij .
A graph Ge = (V, Ee, ωe) is said to be an equality graph for graph G if

Ge =
{
êij ∈ E

∣∣εLi + εRj = ω̂ij
}

(25)

The following lemma summarizes the relation of the MWM between Ge and G, and its proof is followed immediately.

Lemma 1. If an equality graph Ge for graph G has a matching, Me, then Me is a maximum weight matching in G.

Proof. Let S be the sum of the weights of all edges in graph Ge, that is,

NL∑
i=1

εLi +

NR∑
j=1

εRj =
∑

ω̂ij = S (26)

Assume that there is another graph G′ = (V, E ′, ω′) that is not an equality graph with a matching M ′ such that

NL∑
i=1

εLi +

NR∑
j=1

εRj =
∑

ω′ij = S1 > S (27)

indicating that ∃ω′ij > ω̂ij , which contradicts to the fact that εLi + εRj = ω̂ij ≥ ω′ij , and this concludes the proof.

III. MAIN RESULTS

In this section, we attempt to retrieve the optimal solution for the underlying management and control problem with the
Action-Reaction Search (i.e., ARS) algorithm along with Kuhn-Munkres algorithm (i.e., KM), and special attention will be paid
on how to alleviate the dimension explosion problem associated with matrix game strategy without sacrificing performance.
As is well established [2, 3], albeit its effectiveness, dynamic matrix game strategy is plagued by the dimension explosion
problem, which will grow exponentially as the game evolves and could be cumbersome in real time decision. To be more
exact, unit i has a number of nXi (k) choices at time instant k, and

nXi (k) = mX
i (k)cY Xji (k) (28)

where mX
i (k) is the number of the available targets at time instant k. It follows that the number of choices for the whole

force is, at time instant k

nX(k) =

NX∏
i=1

nXi (k) (29)
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Obvious that choice of control input will grow exponentially as k evolves, and eventually saturate computation capacity if
no punitive action is expected. For instance, suppose the Blue force has 3 combat units that each equipped with 5 weapons,
and there are 4 Red units available at the moment. Then, the number of choices for any Blue unit will be nBi (k) = 567, and
the total number of choices for the Blue force will be nB(k) = 5673, any attempt to retrieve a Nash or Stackleberg solution
will be computational exhaustive. Toward this, we apply the ARS algorithm to mitigate dimension explosion problem by
avoiding calculation of the whole payoff matrix. Instead, each unit only needs to search its corresponding row/column to find
an optimal solution, and its effectiveness in extracting pure Nash equilibrium is examined in [25]. The algorithmic procedure
is summarized in Algorithm 1.

Algorithm 1 Action-Reaction Search Algorithm

OUTPUT:
(
uB∗k , uR∗k

)
BEGIN:

1: Select a random strategy ũRk of Red
2: Set maximum iteration steps K
3: i = 0
4: Find ûBk such that JBk,k+1

(
ûBk , ũ

R
k

)
≥ JBk,k+1

(
uBk , ũ

R
k

)
,∀uBk ∈ UBk

5: Let ũBk = ûBk
6: Find ûRk such that JRk,k+1

(
ũBk , û

R
k

)
≥ JRk,k+1

(
ũBk , u

R
k

)
,∀uRk ∈ URk

7: if ûRk == ũRk then
8: uB∗k = ûBk , uR∗k = ûRk
9: goto END

10: else
11: if i > K then
12: Nash equilibrium not found.
13: goto END
14: else
15: ũRk = ûRk
16: i = i+ 1
17: goto Step 4
18: end if
19: end if
END

Lemma 2. If Algorithm 1 can proceed to Step 8, then
(
ûBk , û

R
k

)
is a Nash equilibrium

(
uB∗k , uR∗k

)
.

Proof. Since ûRk = ũRk and ũBk = ûBk , in Step 5 and Step 7, then the equations in Step 4 and Step 6 can be rewritten as

JBk,k+1

(
ûBk , û

R
k

)
≥ JBk,k+1

(
uBk , û

R
k

)
,∀uBk ∈ UBk

JRk,k+1

(
ûBk , û

R
k

)
≥ JRk,k+1

(
ûBk , u

R
k

)
,∀uRk ∈ URk

which are consistent with the definition of the Nash equilibrium as in (21) and (22), and this concludes the proof.

The ARS gradually finds the Nash equilibrium (if exists) through an optimal response strategy made by both players to each
other’s strategy. In particular, the ARS algorithm will maintain two arrays during the procedure, and those arrays will be used
to store the searched indices of the both forces. In this case, if the current strategy has been marked, which means the search
path is in a loop and no Nash equilibrium will be found.

As indicated in Algorithm 1, the ARS algorithm can locate an optimal solution with only one iteration in the best case
scenario, however, it may have to search the whole matrix in the worst case, which could be time-consuming hence cumbersome
for real-time decision. In what follows, we introduce a pruning method to ease the computational burden in Step 4 or Step 6 in
Algorithm 1. Note that the pruning method is commonly adopted in data processing and neural network [26] to eliminate the
unrealistic strategies through reduction of the dimension. Noted that dimension explosion of the underlying problem attributes in
part to the intricate combination of decision factors on both forces, which naturally contains a series of unrealistic/inappropriate
choices that should be eliminated through basic pruning principle.

For a single combat unit Xi at time instant k, let UXi

k =
{
uXi
1 , uXi

2 , ..., uXi

nX
i

}
be its candidate set of actions, with uXi

p ∈
UXi

k , p = 1, ..., nXi termed as a specific action/control of unit Xi. Accordingly, the set of payoff function for unit Xi is
JXi

k,k+1 =
{
jXi
1 , jXi

2 , ..., jXi

nX
i

}
. Then, a candidate action uXi

l ∈ U
Xi

k , l = 1, ..., nXi , can be eliminated if one of the following
condition is satisfied
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Fig. 4: Comparison of complexity (i.e., the degree of freedom in ULTRA is set to 2)

1) uXi

l and uXi
p has the same target, and jXi

l ≤ jXi
p for l, p = 1, ..., nXi .

2) both uXi

l and uXi
p attack no target, and jXi

l ≤ jXi
p for l, p = 1, ..., nXi .

It is implied that condition 1 is proposed to avoid repeated selections of the same target, while condition 2 ensures that
selection of any particular target will produce a better payoff than no selection at all.

In what follows, we demonstrate that the underlying task management problem can be captured by a bigraph, and as such,
fundamental principles in bigraph theory can be readily applied in searching for the optimal response strategy. More specifically,
for a reduced choice set UXi

k for unit Xi, choice uXi
j ∈ U

Xi

k can be represented by a tuple (i, j), where i represents the unit
Xi, and j represents the target (i.e., unit Yi), and j = 0 if unit Xi opts out of attack. Therefore, in order to search for an
optimal response strategy for X , all units in X can be regarded as vertices on one side of the bigraph, while units in Y along
with an empty set (i.e., no attacking target) can be regarded as the vertices on the other side of the bigraph G = (V, E , ω).
Consequently, it can be concluded that, if an edge eij ∈ E exists in bigraph G, there is a choice/option that unit Xi can attack
Yj , and the weight of the edge, ωij , is the payoff of the choice. The proceeding conclusion is applicable in task management
problem in general, but for the underlying combat scenario, each left vertex should match a right vertex, but not necessarily
vice versa, and by previous defined engagement principle, a right vertex can not be matched by multiple left vertices, with
an exception for the empty set. In other words, the underlying problem can be converted into a maximum weight matching
problem in a bipartite graph [27], which, as is well established, can be solved by Kuhn-Munkres (i.e., KM) algorithm [28–30].

In particular, KM algorithm attempts to find the maximum matching by searching the augmenting paths, and if an augmenting
path can not be found, it modifies the labels of the vertices on the search path VS = VSL ∪ VSR, and attempts again until the
bigraph becomes an equality graph. The detailed algorithmic procedure can be summarized in Algorithm 2.

It is apparent that the algorithm complexity of the KM algorithm is

O
(
|E|2

)
= O

((
NXNY

)2)
(30)

where NX refers to the number of units for the X force.
In the case of NX = NY = N , its complexity is O

(
N4
)
, while, in this case, the algorithm complexity for exhaustive

search (i.e., ES) and the ULTRA [17] are
OES = O (N !)
OULTRA = O

(
N2ξ+1

) (31)

where ξ is the degree of freedom in [16].
A comparison of the complexity for the proposed KM algorithm, ES algorithm, and ULTRA algorithm is plotted in Figure

4, and it is clear that ES is indeed a better solution if the combat units are limited (i.e., N < 6), but KM becomes the apparent
choice if the operation is extensive, which will be further classified in the following section.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical simulations are conducted to validate the effectiveness of the proposed KM algorithm. For full
disclosure, all simulations are performed on a desktop computer with a 3.6GHz AMD Ryzen 3500X CPU. Without loss of any
generality, we consider an operation taking place on a 800× 700× 20 (kilometers) region, and there are 7 Blue units with the
mission to destroy at least 40% of a Fixed Target (FT ) defended by 7 Red units. The initial conditions and probability of kill
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Algorithm 2 Maximum Weight Matching
INPUT: Given opponent’s strategy uYk
OUTPUT: Optimal response ûXk

1: for each unit i in X do
2: Find choice set UXi

k for unit i
3: Eliminate unnecessary choices from UXi

k

4: end for
5: Let left vertices be units of X , right vertices the units of Y and an additional empty unit
6: for each left vertex i ∈ VL and right vertex j ∈ VR do
7: εLi = max

j∈VL
{ωij}, εRj = 0

8: end for
9: Initialize the set of left vertices that match the right vertices matched = []

10: for each left vertex i ∈ VL do
11: while true do
12: Set VSL and VSR to empty sets
13: found=HUNGARIAN(i)
14: if found = true then
15: break
16: end if
17: ∆ = min

i∈VS
L

min
j∈VS

R

{
εLi + εRj − ωij

}
18: for each left vertex i ∈ VSL do
19: εLi = εLi −∆
20: end for
21: for each right vertex j ∈ VSR do
22: εRi = εRi + ∆
23: end for
24: end while
25: end for
26: Get matched result ûXk from matched
27:
28: function HUNGARIAN(left vertex i)
29: Add left vertex i to VSL
30: for each right vertex j in right vertices do
31: if εLi + εRj = ωij then
32: if vertex j is an empty unit then
33: return true
34: end if
35: if j /∈ VSR then
36: Add right vertex j to VSR
37: Let left vertex m = matched[j]
38: if m is null or HUNGARIAN(m)=true then
39: matched[j] = i
40: return true
41: end if
42: end if
43: end if
44: end for
45: return false
46: end function
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for each unit are summarized in Table I and Table II. In particular, the Blue units consists of 5 weasels (BW ) each equipped
with 4 air-to-air missiles and 2 bombers (BB) each equipped with 5 air-to-ground bombs, while the Red units consists of
7 weasels (RD) each equipped with 3 air-to-air missiles and an air base (FT ) with 4 ground-to-air missiles, the weighting
coefficients of each unit are summarized in Table III. It is made clear that destroying the FT as well as preserving the bombers
are the priority for the Blue force, while protecting the air base and destroying Blue bombers are priority for the Red force.

The sampling interval T is set to 1 second, and the maximal speed is chosen as 0.8 Mach for the Blue units and 1 Mach
for the Red units. The safety constraints Dunit and Dground are set to 2 km and 5 km, respectively. Before presenting the
main results, a comparison of time consumption among all three schemes are conducted and its results are summarized in
Figure 6(a), which demonstrates that the ES algorithm performs relatively faster only when the unit number is small, and as
N increases, the proposed KM algorithm performs at a much faster pace than all other solutions, which is consistent with the
complexity conclusion.

TABLE I: Initial conditions
Unit Coordinates (km) Weapons

BW1 (720, 610, 20) 4

BW2 (710, 620, 20) 4

BW3 (720, 620, 20) 4

BW4 (710, 610, 20) 4

BW5 (700, 620, 20) 4

BB1 (700, 600, 20) 5

BB2 (800, 600, 20) 5

RD1 (220, 210, 0) 3

RD2 (210, 220, 0) 3

RD3 (210, 200, 0) 3

RD3 (210, 210, 0) 3

RD5 (200, 210, 0) 3

RD6 (200, 200, 0) 3

RD7 (200, 220, 0) 3

FT (200, 200, 0) 4

TABLE II: Probability of kill
BW1 BW2 BW3 BW4 BW5 BB1 BB2 RD1 RD2 RD3 RD4 RD5 RD6 RD7 FT

BW1 0 0 0 0 0 0 0 0.6 0.7 0.6 0.5 0.6 0.7 0.6 0

BW2 0 0 0 0 0 0 0 0.6 0.6 0.5 0.7 0.6 0.7 0.6 0

BW3 0 0 0 0 0 0 0 0.6 0.7 0.6 0.5 0.6 0.7 0.6 0

BW4 0 0 0 0 0 0 0 0.6 0.6 0.5 0.7 0.6 0.7 0.6 0

BW5 0 0 0 0 0 0 0 0.6 0.7 0.6 0.5 0.6 0.7 0.6 0

BB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6

BB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6

RD1 0.4 0.5 0.4 0.6 0.4 0.5 0.5 0 0 0 0 0 0 0 0

RD1 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0 0 0 0 0 0 0 0

RD1 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0 0 0 0 0 0 0 0

RD1 0.4 0.6 0.4 0.6 0.4 0.5 0.5 0 0 0 0 0 0 0 0

RD1 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0 0 0 0 0 0 0 0

RD1 0.4 0.5 0.4 0.6 0.4 0.3 0.5 0 0 0 0 0 0 0 0

RD1 0.4 0.5 0.4 0.6 0.4 0.5 0.5 0 0 0 0 0 0 0 0

FT 0.4 0.3 0.4 0.4 0.4 0.6 0.5 0 0 0 0 0 0 0 0

Figure 5 illustrates the combat trajectories between BW1, RD4 and RD7, implying that when k = 1850 and k = 3280,
BW1 locked RD4 and RD7 as its targets, respectively, and both units exhibit barrel-roll maneuver, which is expected. Figure
6(b) shows the combat performance, where the number of weapons is normalized to be between 0 and 1. Noted that at the end
of the simulation, the Blue force manages to inflict more than 50% of damage to the FT , signifying a victory but at the cost
of heavy damage on the BB1, BW2 and BW3, which attributes to the fact that the weighting coefficients of these damaged



10

TABLE III: Weighting coefficients
B1 B2 B3 B4 B5 B6 B7 R1 R2 R3 R4 R5 R6 R7 FT

βB 0.5 0.5 0.5 0.6 0.5 3 4 0.6 0.6 0.5 0.4 0.6 0.5 0.6 8

βR 0.8 0.9 0.9 0.5 0.5 5 6 0.5 0.8 0.7 0.6 0.6 0.6 0.8 10

Fig. 5: Trajectories of BW1, RD4 and RD7

units are higher than others, meaning that they are prioritized over others for the Red forces. On the other hand, the Red force
suffers serious losses as well, almost half of its units is in severe condition.

Time Comparsion
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Fig. 6: Simulation results

V. CONCLUSIONS

This paper investigated task management and control problem for military operations, we demonstrated that the underlying
problem can be converted to a maximum weight matching problem associated with a bipartite graph, and we proposed an
extension of the Kuhn-Munkres algorithm to search for an optimal response strategy with action-reaction strategy. Simulation
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results show the one-step look-ahead Nash solutions can be achieved for both sides, and application of maximum weight
matching in task management problem can considerably reduce its algorithmic complexity, and consequently makes real-time
decision possible.
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